a2 United States Patent
Shanker

US009183065B1

US 9,183,065 B1
Nov. 10, 2015

(10) Patent No.:
(45) Date of Patent:

(54) PROVIDING ACCESS TO AN APPLICATION
PROGRAMMING INTERFACE THROUGH A
NAMED PIPE

(71) Applicant: Amazon Technologies, Inc., Seattle, WA
(US)

(72) Inventor: Matthew Thomas Shanker, Seattle, WA

(US)

(73) Assignee: Amazon Technologies, Inc., Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 13/666,517

(22) Filed: Nowv. 1, 2012
(51) Imt.ClL
GO6F 9/54 (2006.01)
(52) US.CL
CPC ..o GOG6F 9/544 (2013.01); GO6F 9/541

(2013.01); GOGF 9/546 (2013.01)
(58) Field of Classification Search
CPC GOGF 9/544; GOGF 9/541; GOG6F 9/546
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,049,798 A * 4/2000 Bishopetal.cooeinne. /1
6,170,045 B1* 1/2001 Bobaket al. .. . 711/169
6,247,057 B1* 6/2001 Barrera, III 709/229

6,374,299 B1*
6,438,146 Bl *

4/2002 Fordetal. ... 709/227
8/2002 Brafford ... 370/537

6,868,442 B1* 3/2005 Burdeau 709/223
6,901,596 B1* 5/2005 Gallowayccoooenie 719/330
7,293,145 B1* 11/2007 Bairdetal. 711/162
8,359,603 Bl1* 1/2013 McCannetal. 719/312
<08A SERVICE
v

M6—T aricaLLNg [
PROCESS |+

110A
112 T

PIPE

APPLICATION H

HOST

.
1083\ NETWORK 114 40

2003/0182283 Al*
2004/0148326 Al*
2006/0150200 Al*
2006/0168646 Al*
2007/0101341 Al*
2007/0136356 Al*
2010/0250776 Al*

9/2003 Beanetal.ccceovrvrnnn 707/6
7/2004 Nadgir et al. 709/200
7/2006 Cohen etal. 719/328
7/2006 Wernercccecvervvvvnnnns 726/4
5/2007 Downing et al. .. 719/314
6/2007 Smith et al. 707/102
9/2010 Lev ..o ... 709/238
2011/0087919 Al* 4/2011 Deshmukh et al. . .. 714/4.21
2012/0191860 Al* 7/2012 Traversat et al. 709/226
2013/0262555 Al* 10/2013 Hochmuth 709/201
2014/0109107 Al* 4/2014 Wilkinson et al. 719/313

FOREIGN PATENT DOCUMENTS

CN 101729415 * 92010 . HO4L 12/56
OTHER PUBLICATIONS

“Named Pipe”, Wikipedia [online][retrieved on Oct. 12,
2012]retrieved from: http://en.wikipedia.org/wiki/Named_ pipe 4

Pps.

* cited by examiner

Primary Examiner — Charles E Anya
(74) Attorney, Agent, or Firm — Lee & Hayes, PLLC

(57) ABSTRACT

An API calling process creates a named pipe through which a
program can submit data to an application programming
interface (“API”). Appropriate permissions are set on the
named pipe such that only authorized applications can write
data to the named pipe. When data is written to the named
pipe, the written data is piped to the API calling process. The
API calling process may process the written data, such as by
placing the data into an appropriate format for submission to
an APIL. The API calling process then utilizes appropriate
credentials to call an API with the data written to the named
pipe. For example, the API calling process might utilize ser-
vice credentials to make a Web services API call to submit the
data written to the named pipe to a Web services API exposed
by a network service.

19 Claims, 8 Drawing Sheets

122A 624/\

]

L
i g NETWORK
SERVICE

NETWORK
SERVER

1108 (
)
| NETWORK
SERVICE

NETWORK
SERVER

1048

US 9,183,065 B1

Sheet 1 of 8

Nov. 10, 2015

U.S. Patent

70l

d3INH3S
AHJOMLAN

J0ING3S
AHJOMLIN

L

|

11VO IdV
V1vd

)

1£4%

44"

)

oLl

)

1SOH

AHOMLAN

SNOISSINYId Vi1

3dld
A3aNvN

nm vivd

A 4

:

)

¢kl Obb

vival—oL1

SS300dd
ONITIVO IdY

L7911

1

STVILNIA3EO
JOINGIS

/8l

—

NOILVYOITdd¥

\/\

801

US 9,183,065 B1

Sheet 2 of 8

Nov. 10, 2015

U.S. Patent

d3AH3S
MHJOMLAN

1IVO IdV

A

JOINA3S
HHOMLAN
/
)

m_vmw

m_orv

azcel
Vol
\
JHOMLIN 00!
»<o§
J0IAY3S | vouav)
MHOMLIN vival I«
¢ '
|)
w v VoLl
vre vzzl

vivad)

4 MHOMLIAN
) d801
SNOISSIWYTd »
: g0LL ‘
el L4 344 w
aameny] viva Je Nolvonddy
viva L—d0}}
v
| ssaooua |, STVIINIA3Y0
LT ONITIVD IdY IoIAM3AS a8l
TN
«—> a9l
........ .| ssaooud STYILNIATO
ONIMIVD Iy [€ DiAgas Ve
\
N
VoLl
Viva f—
'y VoLl
Vell L4 344
aawvN [€1.YV9 [Nolvornddy
; VoL 13
SNOISSING3d VL

V80

US 9,183,065 B1

Sheet 3 of 8

Nov. 10, 2015

U.S. Patent

¢ Old

NI LSASTTIL

~T1T sNnoissingad |

................. 3dId AHO103dId
A Q3INVN
~TT
°
o
°
arli
~T1T snoissingad |)
................. 3dld AdO103dId
gazih || Q3NVN
S—T"T
Vil
~TT sNoISSIny3d |
................ 3did AdOLOTHId
AN B a3anvN
] >

[0z0g

- gz0¢

—Ve0Eg

Vel _4 3I0INY3S
MHOMLAN
ozzl
avél__—~ 3I0IAY3S
MHOMLAN €=
qzzl
V¥l _—~ 3ADIAY3S
MHOMLIN <1
\144"

U.S. Patent

Nov. 10, 2015 Sheet 4 of 8

US 9,183,065 B1

— [

l

CREATE NAMED PIPE / SET
PERMISSIONS ON THE
NAMED PIPE

l

RECEIVE DATA FROM AN
APPLICATION VIA
THE NAMED PIPE

l

PROCESS THE RECEIVED DATA

l

UTILIZE SERVICE CREDENTIALS

TO GENERATE AN API CALL TO

PROVIDE THE RECEIVED DATA
TO ANETWORK SERVICE J

408

FIG. 4

US 9,183,065 B1

Sheet 5 of 8

G Ol

Nov. 10, 2015

U.S. Patent

gv0l
NETRE w
MHOMLIAN fmomr
TV IdV ~ LSOH g801
30IAE3S ” 0l_~ prp HOMIAN »
MHOMLIAN Nu ‘ vivad ()
A J SNOISSINYA a0l1
v 801 j » NOILYOIddY
7
ave azz) s | viva [
V0l P
» aINVN .
NEIE I ! h h ZlL g,
MHOML3AN — \ Vv1va Y
»<o§ 90r’ 1804 Tviva v1iva _ -
JOIAYIS | 1vo _n_<\A. v ! VOL |
AHJOMLAN viva [| T S $S3004d —
./ wf ONTWOIY | ~o NOILVDITddV
Ve v voil 9<_szomm_o ¢
vzzl
30IA43S 8L w
V80!

US 9,183,065 B1

L0

Sheet 6 of 8

Nov. 10, 2015

U.S. Patent

Y3IAY3S
MHOMLAN fmomr
30IAY3S | AL
MHOMLIN viva

{ i
w v g0l 1
8ve azzl
V0l
\
JHOMLIN 90
»<o§
J0INY3S | 1voidv?
MHYOMLIN vva | le
L 1
|)
w y VoIl
Vg

vicel

1SOH
arll
Ol n MHOMLAN
3 de01l
SNOISSINYT n
" m_m: 7
azil
T n_mm__ﬂ_w,__mZ < «Foo & NOILVYOI1ddV
¥
viva L—80ki
L Z
= ss300ud SIVILNIAIND
<« | onmvoiav [¢ IoiAuas 8L
7 \
N
oLl
VIVa f—
) VoL L
Vel 4+ 3did
aanwyn [€1.YLV9 €9 Nolwonddy
" <o:v
SNOISSINNT | _—~vpy) w

v80l

U.S. Patent Nov. 10, 2015 Sheet 7 of 8 US 9,183,065 B1

=)/mo

CREATE ONE OR MORE

NAMED PIPES / SET
PRIVILEGES ON THE NAMED 4~"702
PIPES

I

RECEIVE DATA FROM
APPLICATIONS VIA
THE ONE OR MORE

NAMED PIPES 1704

!

IDENTIFY THE DESTINATION
NETWORK SERVICE BASED
UPON THE RECEIVED DATA OR
THE NAMED PIPE UPON WHICH

THE DATA WAS RECEIVED <+ 706

v

IDENTIFY THE SERVICE
CREDENTIALS TO USE FOR AN
API CALL TO THE IDENTIFIED
DESTINATION NETWORK

SERVICE
708

!

PROCESS THE RECEIVED DATA
l + 710

UTILIZE SERVICE CREDENTIALS
TO GENERATE AN API CALL TO
PROVIDE THE RECEIVED DATA
TO THE IDENTIFIED
DESTINATION NETWORK
SERVICE + 719

FIG. 7

L

U.S. Patent Nov. 10, 2015 Sheet 8 of 8 US 9,183,065 B1

106
NETWORK INPUT/ g 818
INTERFACE OUTPUT
CONTROLLER CONTROLLER
810 —1 I 1
CHIPSET 1V 804
STORAGE e
CPUS) [RAM [ROM |1 ~oNTROLLER
Yi Yi {
\ \ 4
) L /—}—\8} i
802 806 808 .
800 OPERATING 4 816
SYSTEM
b—112
NAMED PIPE
F|G 8 L7116
API CALLING
PROCESS

US 9,183,065 B1

1
PROVIDING ACCESS TO AN APPLICATION
PROGRAMMING INTERFACE THROUGH A
NAMED PIPE

BACKGROUND

Creating program code for utilizing an application pro-
gramming interface (“API”) can be difficult and time con-
suming. For instance, in order for a programmer to program
an application to utilize an API, such as a World Wide Web
(“Web”) service AP, it may be necessary for the programmer
to understand a network stack, various protocols, and the
format and use of the API itself. The complexity in creating
program code for accessing and utilizing certain APIs might
discourage programmers from utilizing the APIs, especially
when the APIs are not related to the core functionality of an
application.

It is with respect to these and other considerations that the
disclosure made herein is presented.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are system diagrams showing aspects of one
illustrative mechanism disclosed herein for providing access
to an API through a named pipe;

FIG. 3 is a filesystem diagram showing details of a filesys-
tem utilized to represent the logical structure of one or more
Web service APIs, according to one embodiment disclosed
herein;

FIG. 41s a flow diagram showing an illustrative routine that
describes aspects of the operation of the mechanism shown in
FIGS. 1 and 2 for providing access to an API through a named
pipe;

FIGS. 5 and 6 are system diagrams showing aspects of
another illustrative mechanism presented herein for provid-
ing access to an API through a named pipe;

FIG. 7 is a flow diagram showing an illustrative routine that
describes aspects the operation of the mechanism shown in
FIGS. 5 and 6 for providing access to an API through a named
pipe; and

FIG. 8 is a computer architecture diagram showing one
illustrative computer hardware architecture for implementing
a computing device that might be utilized to implement
aspects of the various embodiments presented herein.

DETAILED DESCRIPTION

The following detailed description is directed to technolo-
gies for providing access to an API through a named pipe.
Utilizing the technologies described herein, a program can
access an API, such as a Web service API, by writing data to
a named pipe. By utilizing a named pipe in this manner, a
programmer can be freed from the typical complexity of
generating program code for accessing an API. Additional
details regarding these and other aspects of the concepts and
technologies disclosed herein for providing access to an API
through a named pipe are provided below.

According to one aspect presented herein, a computer pro-
gram, referred to herein as an API calling process, creates a
named pipe on a network host. A named pipe is a file in a
filesystem that can be utilized to transfer data from one pro-
gram to another program. Using a named pipe, information
written to the named pipe by one program can be transferred
to another program without creating an intermediate tempo-
rary file. In the embodiments presented herein, processes

20

30

35

40

45

2

such as application programs executing on the network host,
can write data to the named pipe that then is piped to the API
calling process.

In one embodiment, filesystem permissions are set on the
named pipe to restrict write access to the named pipe to one or
more applications executing on the network host. The appli-
cations authorized to write to the named pipe are those appli-
cations that are also authorized to access an API, such as a
Web service API exposed by a network service. In this way, a
mapping can be created between filesystem permissions on
the named pipe to credentials for accessing an API. It should
be appreciated that other types of APIs in addition to Web
service APIs might also be accessed through a named pipe in
a similar manner.

In some embodiments, the named pipe is stored in a file-
system directory that is associated with an API. In this way, a
mapping can be created between locations in a filesystem and
APIs, such as Web service APIs. Additionally, multiple
instances of the API calling process along with multiple asso-
ciated named pipes might be created on the same host.

When an application with appropriate permissions writes
data to the named pipe, the written data is piped to the API
calling process. In response to receiving the written data, the
API calling process utilizes a set of service credentials to
perform an API call containing the written data. For instance,
the API calling process might utilize the service credentials to
perform a Web service API call that includes the written data
to a Web service API exposed by a network service. Other
types of credentials might also be utilized to submit data
written to a named pipe to other types of APIs.

In some embodiments, the API calling process performs
processing on the data written to the named pipe prior to
generating an API call with the written data. For example, the
API calling process might place the data written to the named
pipe into a format suitable for submission to an APl if the data
is not already in an appropriate format. The API calling pro-
cess might also batch the data written to the named pipe with
other data written to the named pipe for submission to the
API. In this way, the processing and network load on the
network host executing the API calling process might be
reduced. The API calling process might also perform other
types of processing on data written to a named pipe prior to
submitting the data to an API.

In some implementations, an application writes metrics
associated with the execution of the application to the named
pipe. In this way, the application can easily submit metrics to
an API configured to collect, aggregate, and analyze the met-
rics. In other implementations, an application writes log data
associated with the execution of the application to the named
pipe. In this way, an application log can easily be easily
submitted to an API configured to collect and analyze appli-
cation logs. Other types of data might also be written to a
named pipe and submitted to an API in other embodiments.

In some implementations, multiple applications might
write data to the same named pipe. In these implementations,
the API calling process might examine the written data to
identify the application that wrote the data to the named pipe.
The API calling process might also identify the destination
APT for the written data based upon the contents of the written
data, which might include data specifying the identity of the
application that wrote the data to the named pipe.

In other embodiments, a single instance of the API calling
process might receive data written to multiple named pipes. In
this embodiment, the API calling process might identify the
application writing the data and the destination API for the
data based upon the named pipe to which the data was written.
Appropriate credentials for accessing an API might also be

US 9,183,065 B1

3

selected based upon the calling application, the named pipe to
which data was written, the contents of the data, or in another
manner. Additional details regarding the various components
and processes described above for accessing an API through
a named pipe will be presented below with regard to FIGS.
1-8.

It should be appreciated that the subject matter presented
herein may be implemented as a computer process, a com-
puter-controlled apparatus, a computing system, or an article
of manufacture, such as a computer-readable storage
medium. While the subject matter described herein is pre-
sented in the general context of program modules that execute
on one or more computing devices, those skilled in the art will
recognize that other implementations may be performed in
combination with other types of program modules. Generally,
program modules include routines, programs, components,
data structures, and other types of structures that perform
particular tasks or implement particular abstract data types.

Those skilled in the art will also appreciate that aspects of
the subject matter described herein may be practiced on or in
conjunction with other computer system configurations
beyond those described herein, including multiprocessor sys-
tems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, handheld
computers, personal digital assistants, e-readers, cellular tele-
phone devices, special-purposed hardware devices, network
appliances, and the like. The embodiments described herein
may be practiced in distributed computing environments,
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules may be
located in both local and remote memory storage devices.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof, and
that show, by way of illustration, specific embodiments or
examples. The drawings herein are not drawn to scale. Like
numerals represent like elements throughout the several fig-
ures (which may be referred to herein as a “FIG.” or “FIGS.”).

FIG. 1 is a system diagram showing aspects of one illus-
trative mechanism disclosed herein for accessing an API
through a named pipe. As shown in F1G. 1, a network host 102
is configured to communicate with a network server 104 by
way of a network 106. The network host 102 and the network
server 104 may be server computers or other types of com-
puting devices configured to perform the functionality
described herein. The network 106 may be a local area net-
work (“LAN”), a wide area network (“WAN”) such as the
Internet, or a combination of networks. It should be appreci-
ated that the configuration of the network host 102, the net-
work server 104, and the network 106 shown in FIG. 1 have
been simplified for discussion purposes. These elements may
include many more components than shown in FIG. 1.

As also illustrated in FIG. 1, the network host 102 is con-
figured in one embodiment to execute an API calling process
116. As will be described in greater detail herein, the API
calling process 116 is configured to create a named pipe 112
on the network host 102. As mentioned briefly above, a
named pipe is a file in a filesystem that can be utilized to
transfer data from one program to another program. Using a
named pipe, information written to the named pipe 112 by
one program can be transferred to another program without
creating an intermediate temporary file. For instance, in the
embodiments presented herein, an application 108 executing
on the network host 102 can write data 110 to the named pipe
112 that is piped to the API calling process 116. Additional
details regarding this process will be provided below.

10

15

20

25

30

35

40

45

50

55

60

65

4

In the embodiment shown in FIG. 1, the API calling pro-
cess 116 is also configured to generate and make an API call
120 to an API 122 exposed by a network service 124 execut-
ing on the network server 104. As will be described in greater
detail herein, the API call 120 includes the data 110 written to
the named pipe by the application 108. By allowing an appli-
cation 108 to provide the data 110 to the API 122 by writing
the data 110 to the named pipe 112, the programmer of the
application 108 is freed from the complexities of the AP1 122.
Rather, the programmer only needs to configure the applica-
tion 108 to write the data 110 to the named pipe 112. Addi-
tional details regarding these processes will be provided
below with regard to FIGS. 2-8.

As also illustrated in FIG. 1, the API calling process 116
might set permissions 114 on the named pipe 112. The per-
missions 114 describe the access rights that programs and
users have to write to the named pipe 112. For example, the
API calling process 116 may set the permissions 114 such that
only applications configured to make an API call 120 to the
API122 have permissions 114 to write to the named pipe 112.
In the example shown in FIG. 1, for instance, the permissions
114 may be set such that only the application 108 has permis-
sions 114 to write to the named pipe 112. In one implemen-
tation, the permissions 114 are UNIX permissions, such as
user or group filesystem permissions. In this implementation,
a mapping can be effectively created between the UNIX
group permissions and an API permission structure, such as
API service credentials. This mechanism is described in
greater detail below.

In some embodiments, the API calling process 116 also
utilizes service credentials 118 to perform the API call 120 to
the API 122. The service credentials 118 are credentials for
accessing the network service 124. By utilizing credentials
118 in this way, an informal mapping is created between the
permissions 114 and the credentials 118 utilized to access the
network service 124. In the example shown in FIG. 1, only a
single set of service credentials 118 is utilized to perform an
API call 120 to the API 122. In other embodiments described
below, however, the API calling process 116 might maintain
multiple sets of service credentials 118 and select the appro-
priate service credentials 118 for a particular API call 120
based upon the contents of the data 110, the named pipe 112
to which data 110 is written, the API 122 that is being called,
and/or other factors.

In the example shown in FIG. 1, the API 122 is a Web
service API exposed by the network service 124. It should be
appreciated, however, that the embodiments described herein
might be utilized with other types of APIs other than Web
service APIs. For instance, the embodiments disclosed herein
might be utilized with APIs exposed by programs executing
on the network host 102, by an operating system, or by other
types of programs using other types of APIs.

As will also be described in greater detail below, the API
calling process 116 might perform various types of process-
ing on the data 110 prior to generating the API call 120 with
the data 110. For instance, the API calling process 116 might
perform various translations, formatting operations, and/or
aggregation operations on the data 110. As an example, the
API calling process 116 might format the data 110 so that the
data 110 is in a format suitable for submission to the API 122.

The API calling process 116 might also batch the data 110
written to the named pipe 112 with other data written to the
named pipe 112 for submission to the API 122. In this way, the
API calling process 116 might reduce the processing and
network load on the network host 112 as a result of the calls
to the API 122. In some implementations, the API calling
process 116 might discard data that has been batched with

US 9,183,065 B1

5

other data when the data has expired prior to calling the API
122. In this way, expired data is not submitted to the AP1 122.
The API calling process 116 might communicate with the
submitting application in order to determine if data has
expired. The API calling process 116 might also perform
other types of processing on the data 110 prior to calling the
API 122.

In some implementations, the data 110 written to the
named pipe 112 by the application 108 is metrics data related
to the execution of the application 108. In other implementa-
tions, the data 110 is log data relating to the execution of the
application 108. It should be appreciated, however, that these
examples are merely illustrative, and that other types of data
may be submitted to the API 122 in the manner described
herein.

Additionally, although an application 108 is illustrated in
FIG. 1 as writing to the named pipe 112, any type of process
executing on a computing device, may write data to a named
pipe 112 in the manner described herein. In this regard, it
should be appreciated that the embodiments disclosed herein
are not limited to use with an application 108, a Web service
API, or server computers operating in a network environ-
ment. Additional details regarding these and other aspects of
the mechanism disclosed herein for providing access to an
API through a named pipe 112 will be provided below with
regard to FIGS. 2-7.

FIG. 2 is a system diagram showing aspects of one illus-
trative mechanism disclosed herein for providing access to an
API 122 through a named pipe 112. In the example shown in
FIG. 2, two instances of the API calling process 116A-116B
are executing on the network host 102. Each of'the API calling
processes 116A-116B is configured to generate API calls
120A-120B, respectively, to different APIs 122A-122B. In
the example shown in FIG. 2, a network service 124 A execut-
ing on a network server 104A exposes the API 122A and a
network service 124B executing on a network server 104B
exposes the API 122B.

As shown in FIG. 2, an application 108A can write data
110A to anamed pipe 112A created by an API calling process
116A. The permissions 114 associated with the named pipe
112A allow the application 108A to write the data 110A to the
named pipe 112A. The data 110A is then piped to the API
calling process 116 A which, in turn, utilizes the service cre-
dentials 118A to generate an API call 120A including the data
110A to the APT 122A.

In a similar fashion, the API calling process 116B creates
the named pipe 112B and associates permissions 114B with
the named pipe 112B that provide write access to the named
pipe 112B to the application 108B. The application 108B can
then write data 110B to the named pipe 112B, which, in turn,
is piped to the API calling process 116B. The API calling
process 116B then utilizes the service credentials 118B to
generate an API call 120B containing the data 110B to the API
122B.

Inthe manner illustrated in FIG. 2, multiple instances of the
API calling process 116 can be executed on a single network
host 102. Each instance of the API calling process 116 can be
configured to call an API 122 exposed by a different network
service 124. Additionally, each API calling process 116 can
be configured with appropriate service credentials 118 for
accessing the associated API 122.

It should be appreciated that although two instances of the
API calling process 116 are shown in FIG. 2 as executing on
the network host 102, many more such instances of the API
calling process 116 might be executed in other embodiments.
These instances of the API calling process 116 might perform
API calls 120 to a like, or different number, of APIs 122

10

15

20

25

30

35

40

45

50

55

60

65

6

exposed by network services 124 executing on the same or
different network servers 104. As mentioned above, calls
might also be made in a similar fashion to other types of APIs
in other embodiments.

FIG. 3 is a filesystem diagram showing details of a filesys-
tem utilized to represent the logical structure of one or more
Web service APIs 122, according to one embodiment dis-
closed herein. In particular, the filesystem illustrated in FIG.
3 is configured to create a representation of the structure of the
APIs 122A-122C exposed by the network services 124 A-
124C respectively.

In order to represent the logical structure of the APIs 122 A-
122C, named pipes 112A-112C have been created in direc-
tories 302A-302C respectively. The directory 302A and the
named pipe 112 A correspond to the API 122 A exposed by the
network service 124A. Similarly, the directory 302B and the
named pipe 112B correspond to the API 122B exposed by the
network service 124B. Likewise, the directory 302C and the
named pipe 112C correspond to the API 122C exposed by the
network service 124C. As also shown in FIG. 3, each of the
named pipes 112A-112C have associated permissions 114 A-
114C, respectively, that provide write access to the named
pipes 112A-112C to certain applications or processes.

By configuring the filesystem shown in FIG. 3 in the man-
ner described above, the logical structure of the APIs 122A-
122C of the network services 124-124C can be represented.
This may assist applications 108 or other processes that write
data to the named pipes 112A-112C in discovering the struc-
ture of the APIs 122 A-122C exposed by the network services
124 A-124C. In this regard, it should be appreciated that the
filesystem shown in FIG. 3 has been simplified for discussion
purposes and that many levels of directories 302 and named
pipes 112 might be created within the filesystem to represent
an arbitrary structure of a group of APIs 122. Moreover, it
should also be appreciated that a single named pipe 112 might
be utilized to call, access, and/or otherwise utilized multiple
aspects of an API 122 provided by a network service 124.

FIG. 4 is a flow diagram showing a routine 400 that illus-
trates additional aspects of the mechanism shown in FIGS.
1-3 for providing access to an API 122 through a named pipe
112, according to one embodiment presented herein. It should
be appreciated that the logical operations described herein
with respect to FIG. 4 and the other figures are implemented
(1) as a sequence of computer implemented acts or program
modules running on a computing system and/or (2) as inter-
connected machine logic circuits or circuit modules within
the computing system.

The implementation of the various components described
herein is a matter of choice dependent on the performance and
other requirements of the computing system. Accordingly,
the logical operations described herein are referred to vari-
ously as operations, structural devices, acts, or modules.
These operations, structural devices, acts, and modules may
be implemented in software, in firmware, in special purpose
digital logic, and any combination thereof. It should also be
appreciated that more or fewer operations may be performed
than shown in the figures and described herein. Some opera-
tions might also be performed in parallel, or in a different
order than those described herein.

The routine 400 begins at operation 402, where the API
calling process 116 creates the named pipe 112. The API
calling process 116 also sets the permissions 114 on the
named pipe 112, thereby providing write access to the named
pipe 112 to authorized applications 108. It should be appre-
ciated that processes other than the API calling process 116
might create the named pipe 112 and set or modify the per-
missions 114. Additionally, the named pipe 112 and permis-

US 9,183,065 B1

7

sions 114 may be created and specified by an administrator of
the computing system upon which the named pipe 112 is
created.

From operation 402, the routine 400 proceeds to operation
404 where an application 108 writes data 110 to the named
pipe 112. The data 110 is then piped to the API calling process
116. In response to receiving the data 110, the routine 400
proceeds to operation 406, where the API calling process 116
processes the received data 110. As discussed above, the API
calling process 116 might perform various types of process-
ing on the data 110. For example, the API calling process 116
may translate the data 110 to a format appropriate for sub-
mission to the API 122. The API calling process 116 might
also perform other types of formatting operations on the
received data 110. The API calling process 116 might also
batch the data 110 for submission to the API 122 with other
data. Other types of processing might also be performed.

From operation 406, the routine 400 proceeds to operation
408, where the API calling process 116 utilizes the service
credentials 118 to create an API call 120 that includes the data
110. The API call 120 is then made to the API 122 exposed by
the network service 124 in one embodiment. As discussed
above, the embodiments disclosed herein are not limited to
performing API calls 120 to a Web service API. Other types of
API calls 120 might also be made to other types of APIs
utilizing the mechanism described herein. From operation
408, the routine 400 proceeds back to operation 408, where
additional data 110 may be received by way of the named pipe
112 and processed by the API calling process 116 in the
manner described above.

FIG. 5 is a system diagram showing aspects of another
illustrative mechanism presented herein for providing access
to an API 122 through a named pipe 112. In the embodiment
shown in FIG. 5, multiple applications 108 A-108B can write
data 110A-110B, respectively, to the same named pipe 112.
The named pipe 112 pipes the data 110A-110B to the API
calling process 116.

Inresponsetoreceiving the data 110A orthe data 110B, the
API calling process 116 identifies the application 108 A-108B
that submitted the data to the named pipe 112 through an
analysis of the data 110A-110B. For instance, the data 110A-
110B might include data that identifies the application 108 A-
108B that wrote the data 110 to the named pipe 112. Other
mechanisms might also be utilized by the API calling process
116 to identify the particular application 108 A or 108B that
wrote the data 110 to the named pipe 112.

In one implementation, the API calling process 116 utilizes
the same service credentials 116 to generate API calls 120A-
120B for both of the applications 108A-108B. In other
embodiments, however, the service credentials 108 comprise
a list of credentials corresponding to each of the applications
108A-108B. In this way, the API calling process 116 can
utilize different service credentials 118 for each of the appli-
cations 108A-108B.

The API calling process 116 might also determine which of
multiple APIs 122A-122B to call for a particular application
108-108B. This determination might be made based upon the
application 108 A-108B that submitted data 110 to the named
pipe 112. For instance, the API calling process 116 might be
configured to make an API call 120A to the API 122A when
data 110A is received from the application 108A. Similarly,
the API calling process 116 might be configured to make an
API call 120B, including the data 110B when an application
108B writes the data 110B to the named pipe 112. The API
calling process 116 might also be configured to call other
APIs when data is written to the named pipe 112 by other
applications.

25

30

40

45

55

8

Although only two applications 108A-108B are illustrated
in FIG. 5 as writing data to the named pipe 112, it should be
appreciated that many more such applications 108 might
write data to the named pipe 112 in other embodiments. In
this way, a single named pipe 112 and a single instance of the
API calling process 116 can be utilized to generate a multi-
tude of API calls 120 to a multitude of APIs 122.

FIG. 6 is a system diagram showing aspects of another
illustrative mechanism presented herein for providing access
to an API through a named pipe. In the embodiment shown in
FIG. 6, a single instance of the API calling process 116 is
configured to receive data 110A-110B by way of two or more
named pipes 112A-112B, respectively. Each of the named
pipes 112A-112B may have independent permissions 114 A-
114B that specify the applications 108 that are authorized to
write data to the respective named pipe 112.

In the example shown in FIG. 6, the application 108A has
permissions 114A to write data 110A to the named pipe
112A. The data 110A is then provided by way of the named
pipe 112A to the API calling process 116. In response to
receiving the data 110A, the API calling process 116 might
identify the service credentials 118 to utilize in an API call
120A based on the contents of the data 110A, or based upon
the identity of the named pipe 112A to which the data 110A
was written. For instance, in the example shown in FIG. 6, if
data is written to the named pipe 112A, the API calling
process 116 utilizes service credentials 118 associated with
the application 108A.

In a similar fashion, the application 108B has also been
provided permissions 114B to write data 110B to the named
pipe 112B. When the API calling process 116 receives the
data110B, the API calling process 116 determines the service
credentials 118 to utilize for an API call 120B based upon the
data 110B, or the identity of the named pipe 112B to which
the data 110B was written. Additionally, the API calling pro-
cess 116 might determine the particular API 122A-122B to
call based upon the contents of the data 110A-110B, the
named pipe 112A-112B to which the data 110A-110B was
written or based on the application 108A-108B submitting
the data 110A-110B.

Once the API calling process 116 has identified the appro-
priate service credentials 108 and the appropriate API 122 to
call, the API calling process 116 utilizes the credentials 118 to
generate the API call 120. For instance, in the example shown
in FIG. 6, the API calling process 116 generates an API call
120A that includes the data 110A written to the named pipe
112A by the application 108 A. The API call 120A is made to
the API 122A exposed by the network service 124 A execut-
ing on the network server 104A. Likewise, the API calling
process 116 creates an API call 120B that includes the data
110B written to the named pipe 112B by the application
108B. The API call 120B is made to the API 122B exposed by
the network service 124B executing on the network server
104B. Additional details regarding this mechanism and the
mechanism described above with regard to FIG. 5 will be
provided below with regard to FIG. 7.

FIG. 7 is a flow diagram showing an illustrative routine 700
that describes aspects of the operation of the mechanism
shown in FIGS. 5 and 6 for providing access to an API 122
through a named pipe 112. The routine 700 begins at opera-
tion 702, where the API calling process 116 or another pro-
cess creates one or more named pipes 112A-112B on the
network host 102. Additionally, as described above, the API
calling process 116 or another process can set permissions
114 A-114B, respectively, on the created named pipes 112A-
112B. The permissions 114A-114B specify the applications

US 9,183,065 B1

9

108 and/or other processes that are authorized to write data to
the created named pipes 112A-112B, respectively.

From operation 702, the routine 700 proceeds to operation
704, where the API calling process 116 receives data 110A or
data 110B by way of the named pipes 112A-112B, respec-
tively. The routine 700 then proceeds to operation 706, where
the API calling process 116 identifies the destination AP 122
for the received data 110 based upon the contents of the
received data 110, as illustrated above with regard to FIG. 5,
or based upon the named pipe 112 to which the data was
written, as discussed above with reference to FIG. 6.

From operation 706, the routine 700 proceeds to operation
708, where the API calling process 116 identifies the service
credentials 118 to utilize for an API call 120 to the identified
API. As discussed above, the service credentials 118 to be
utilized may be identified based upon the API 122 to be
called, the application 108 that submitted the data 110 to the
named pipe 112, the named pipe 112 upon which the data 110
was received, and/or other factors.

Once the destination API 122 and the appropriate service
credentials 118 have been identified, the routine 700 proceeds
to operation 710. At operation 710, the API calling process
116 processes the received data 110. As discussed above, this
might include translating, formatting, and/or batching the
received data. Other types of processing might also be per-
formed prior to generating an API call with the data.

From operation 710, the routine 700 proceeds to operation
712, where the API calling process 116 utilizes the identified
service credentials 118 to provide the received data 110 to the
identified API 122. For instance, in the example shown in
FIG. 6, the API calling process 116 utilizes the service cre-
dentials 118 to generate an API call 120A that includes the
data 110A written to the named pipe 112A by the application
108A. The APIcall 120A is made to the API 122 A exposed by
the network service 124A executing on the network server
104A. Other such calls might also be made to other APIs 122
exposed using other technologies. From operation 712, the
routine 700 proceeds to operation 714 where additional data
110 received at the API calling process 116 might be pro-
cessed in a similar manner as described above.

FIG. 8 shows an example computer architecture for a com-
puter 800 capable of executing the program components
described above for providing access to an AP1 122 through a
named pipe 112. The computer architecture shown in FIG. 8
illustrates a conventional server computer, workstation, desk-
top computer, laptop, tablet, smartphone, network appliance,
personal digital assistant (“PDA”), e-reader, digital cellular
phone, or other computing device, and may be utilized to
execute the various software components presented herein.

The computer 800 includes a baseboard, or “motherboard,”
which is a printed circuit board to which a multitude of
components or devices may be connected by way of a system
bus or other electrical communication paths. In one illustra-
tive embodiment, one or more central processing units
(“CPUs”) 802 operate in conjunction with a chipset 804. The
CPUs 802 may be standard programmable processors that
perform arithmetic and logical operations necessary for the
operation of the computer 800.

The CPUs 802 perform operations by transitioning from
one discrete, physical state to the next through the manipula-
tion of switching elements that differentiate between and
change these states. Switching elements may generally
include electronic circuits that maintain one of two binary
states, such as flip-flops, and electronic circuits that provide
an output state based on the logical combination of the states
of'one or more other switching elements, such as logic gates.
These basic switching elements may be combined to create

10

15

20

25

30

35

40

45

50

55

60

65

10

more complex logic circuits, including registers, adders-sub-
tractors, arithmetic logic units, floating-point units, and the
like.

The chipset 804 provides an interface between the CPUs
802 and the remainder of the components and devices on the
baseboard. The chipset 804 may provide an interface to a
random access memory (“RAM”) 806, used as the main
memory in the computer 800. The chipset 804 may further
provide an interface to a computer-readable storage medium
such as a read-only memory (“ROM”) 808 or non-volatile
RAM (“NVRAM”) for storing basic routines that help to
startup the computer 800 and to transfer information between
the various components and devices. The ROM 808 or
NVRAM may also store other software components neces-
sary for the operation of the computer 800 in accordance with
the embodiments described herein.

The computer 800 may operate in a networked environ-
ment using logical connections to remote computing devices
and computer systems through a network, such as the local
area network 106. The chipset 804 may include functionality
for providing network connectivity through a NIC 810, such
as a gigabit Ethernet adapter. The NIC 810 is capable of
connecting the computer 800 to other computing devices over
the network 106. It should be appreciated that multiple NICs
810 may be present in the computer 800, connecting the
computer to other types of networks and remote computer
systems.

The computer 800 may be connected to a mass storage
device 812 that provides non-volatile storage for the com-
puter. The mass storage device 812 may store system pro-
grams, application programs, other program modules, and
data, which have been described in greater detail herein. The
mass storage device 812 may be connected to the computer
800 through a storage controller 814 connected to the chipset
804. The mass storage device 812 may consist of one or more
physical storage units. The storage controller 814 may inter-
face with the physical storage units through a serial attached
SCSI(*“SAS”) interface, a serial advanced technology attach-
ment (“SATA”) interface, a Fibre Channel (“FC”) interface,
or other type of interface for physically connecting and trans-
ferring data between computers and physical storage units.

The computer 800 may store data on the mass storage
device 812 by transforming the physical state of the physical
storage units to reflect the information being stored. The
specific transformation of physical state may depend on vari-
ous factors, in different implementations of this description.
Examples of such factors may include, but are not limited to,
the technology used to implement the physical storage units,
whether the mass storage device 812 is characterized as pri-
mary or secondary storage, and the like.

For example, the computer 800 may store information to
the mass storage device 812 by issuing instructions through
the storage controller 814 to alter the magnetic characteristics
of a particular location within a magnetic disk drive unit, the
reflective or refractive characteristics of a particular location
in an optical storage unit, or the electrical characteristics of a
particular capacitor, transistor, or other discrete component in
a solid-state storage unit. Other transformations of physical
media are possible without departing from the scope and
spirit of the present description, with the foregoing examples
provided only to facilitate this description. The computer 800
may further read information from the mass storage device
812 by detecting the physical states or characteristics of one
or more particular locations within the physical storage units.

In addition to the mass storage device 812 described above,
the computer 800 may have access to other computer-read-
able storage media to store and retrieve information, such as

US 9,183,065 B1

11

program modules, data structures, or other data. It should be
appreciated by those skilled in the art that computer-readable
storage media can be any available media that provides for the
storage of non-transitory data and that may be accessed by the
computer 800.

By way of example, and not limitation, computer-readable
storage media may include volatile and non-volatile, remov-
able and non-removable media implemented in any method
or technology. Computer-readable storage media includes,
but is not limited to, RAM, ROM, erasable programmable
ROM (“EPROM”), electrically-erasable programmable
ROM (“EEPROM”), flash memory or other solid-state
memory technology, compact disc ROM (“CD-ROM”), digi-
tal versatile disk (“DVD”), high definition DVD (“HD-
DVD”), BLU-RAY, or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium that can be
used to store the desired information in a non-transitory fash-
ion.

The mass storage device 812 may store an operating sys-
tem 816 utilized to control the operation of the computer 800.
According to one embodiment, the operating system com-
prises the LINUX operating system. According to another
embodiment, the operating system comprises the WIN-
DOWS® SERVER operating system from MICROSOFT
Corporation. According to further embodiments, the operat-
ing system may comprise the UNIX or SOLARIS operating
systems. It should be appreciated that other operating systems
may also be utilized. The mass storage device 812 may store
other system or application programs and data utilized by the
computer 800, such as the API calling process 116, the named
pipe 112, and/or the other software components and data
described above. The mass storage device 812 might also
store other programs and data not specifically identified
herein.

In one embodiment, the mass storage device 812 or other
computer-readable storage media is encoded with computer-
executable instructions which, when loaded into the com-
puter 800, transforms the computer from a general-purpose
computing system into a special-purpose computer capable
of implementing the embodiments described herein. These
computer-executable instructions transform the computer
800 by specifying how the CPUs 802 transition between
states, as described above. According to one embodiment, the
computer 800 has access to computer-readable storage media
storing computer-executable instructions which, when
executed by the computer 800, perform the routines 400 and
700, described above with regard to FIGS. 4 and 7, respec-
tively.

The computer 800 may also include an input/output con-
troller 818 for receiving and processing input from a number
of input devices, such as a keyboard, a mouse, a touchpad, a
touch screen, an electronic stylus, or other type of input
device. Similarly, the input/output controller 818 may pro-
vide output to a display, such as a computer monitor, a flat-
panel display, a digital projector, a printer, a plotter, or other
type of output device. It will be appreciated that the computer
800 may not include all of the components shown in FIG. 8,
may include other components that are not explicitly shown
in FIG. 8, or may utilize an architecture completely different
than that shown in FIG. 8.

Based on the foregoing, it should be appreciated that tech-
nologies for accessing an API through a named pipe have
been presented herein. Although the subject matter presented
herein has been described in language specific to computer
structural features, methodological acts, and computer read-
able media, it is to be understood that the invention defined in

10

15

20

25

30

35

40

45

50

55

60

65

12

the appended claims is not necessarily limited to the specific
features, acts, or media described herein. Rather, the specific
features, acts, and mediums are disclosed as example forms of
implementing the claims.

The subject matter described above is provided by way of
illustration only and should not be construed as limiting.
Furthermore, the claimed subject matter is not limited to
implementations that solve any or all disadvantages noted in
any part of this disclosure. Various modifications and changes
may be made to the subject matter described herein without
following the example embodiments and applications illus-
trated and described, and without departing from the true
spirit and scope of the present invention, which is set forth in
the following claims.

What is claimed is:
1. A computer-readable storage medium having computer-
executable instructions stored thereupon which, when
executed by a computer, cause the computer to:
create one or more named pipes on a network host;
set one or more permissions on the named pipes to provide
write access to the named pipes to one or more applica-
tion programs executing on the network host that are
authorized to access one or more application program-
ming interfaces (APIs) exposed by one or more services;

receive data written to one of the named pipes by one of the
application programs;

identify a destination API for the written data from the one

or more APIs based upon the data written to the one of
the named pipes;

process the data written to the one of the named pipes prior

to performing an API call to the identified destination
API; and

perform the API call that includes the processed written

data to the identified destination API.

2. The computer-readable storage medium of claim 1,

wherein the named pipe is stored in a directory on the

network host that is associated with the destination API.

3. The computer-readable storage medium of claim 1
wherein processing the data written to the named pipe com-
prises placing the data written to the named pipe into a format
suitable for submission to the destination API.

4. The computer-readable storage medium of claim 1,
wherein processing the written data comprises batching the
received data written to the named pipe with other data writ-
ten to the named pipe prior to transmission to the destination
APL

5. The computer-readable storage medium of claim 1,
wherein the data written to the named pipe comprises one or
more metrics relating to the execution of the application
program writing the data to the named pipe.

6. The computer-readable storage medium of claim 1,
wherein the data written to the named pipe comprises log data
relating to the execution of the application program writing
the data to the named pipe.

7. A computer-implemented method for accessing one or
more application programming interface (APIs) through a
named pipe, the method comprising performing computer-
implemented operations for:

creating one or more named pipes on a network host;

setting one or more permissions on the named pipes to

provide write access to the named pipes to one or more
application programs executing on the network host that
are authorized to access one or more APIs exposed by
one or more services;

receiving data written to one of the named pipes by one of

the application programs;

US 9,183,065 B1

13

identifying a destination API for the written data from the
one or more APIs based upon the data written to the one
of the named pipes;

processing the data written to the one of the named pipes

prior to performing an API call to the identified destina-
tion API; and

performing the API call that includes the processed written

data to the identified destination API.

8. The computer-implemented method of claim 7, wherein
the written data comprises one or more metrics for the appli-
cation program writing the data to the named pipe.

9. The computer-implemented method of claim 7, wherein
the API call is performed utilizing a set of service credentials
selected based upon the identified destination API.

10. The computer-implemented method of claim 7,
wherein processing the written data comprises placing the
written data into a format suitable for submission to the API.

11. The computer-implemented method of claim 7,
wherein identifying a destination API for the written data
comprises identifying a destination API for the written data
based upon the named pipe to which the data was written.

12. A system for performing an application programming
interface (API) call using a named pipe, the system compris-
ing one or more computing devices configured to:

create one or more named pipes,

set one or more permissions on the named pipes to provide

write access to the named pipes to one or more applica-
tion programs executing on a host that are authorized to
access one or more APIs exposed by one or more ser-
vices,

receive data written to one of the named pipes by one of the

application programs,

identify a destination API based upon the data written to the

one of the named pipes;

process the data written to the one of the named pipes prior

to performing an API call using the written data, and
perform the API call that includes the processed written
data to the identified destination API.

13. The system of claim 12, wherein the data written to the
named pipe comprises one or more metrics relating to the
execution of the application program writing the data to the
named pipe.

10

15

20

25

30

35

40

14

14. The system of claim 12, wherein the API call is per-
formed utilizing a set of credentials selected based upon the
identified destination API.

15. The system of claim 12, wherein the named pipe is
created on the host executing the one of the applications
writing data to the named pipe.

16. An apparatus for performing an application program-
ming interface (API) call using a named pipe, the apparatus
comprising:

a processor; and

a computer-readable storage medium having computer-

executable instructions stored thereupon which, when
executed by the processor, cause the processor to
create one or more named pipes,

set one or more permissions on the named pipes to provide

write access to the named pipes to one or more applica-
tion programs executing on a host that are authorized to
access one or more APIs exposed by one or more ser-
vices,

receive data written to one of the named pipes by one of the

application programs,

identify a destination API based upon the data written to the

one of the named pipes;

process the data written to the named pipe prior to perform-

ing an API call using the written data, and

perform the API call that includes the processed written

data to the identified destination API.

17. The apparatus of claim 16, wherein the API call is
performed utilizing a set of service credentials selected based
upon the APL

18. The apparatus of claim 16, wherein the named pipe is
stored in a directory that is associated with the API.

19. The apparatus of claim 16, wherein the data written to
the named pipe comprises one or more metrics relating to the
execution of the program writing the data to the named pipe,
and wherein processing the data written to the named pipe
prior to performing the API call comprises batching the data
written to the named pipe with other metrics data written to
the named pipe prior to transmission to the API.

#* #* #* #* #*

